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Abstract

Introduction—Accurately identifying youth at highest risk of firearm violence involvement 

could permit delivery of focused, comprehensive prevention services. This study explored whether 

readily available city and state administrative data covering life events before youth firearm 

violence could elucidate patterns preceding such violence.

Methods—Four hundred twenty-one individuals arrested for homicide, attempted homicide, 

aggravated assault, or robbery with a firearm committed in Wilmington, Delaware, from January 

1, 2009 to May 21, 2014, were matched 1:3 to 1,259 Wilmington resident controls on birth year 

and sex. In 2015, descriptive statistics and a conditional logistic regression model using Delaware 

healthcare, child welfare, juvenile services, labor, and education administrative data examined 

associations between preceding life events and subsequent firearm violence.
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Results—In a multivariable adjusted model, experiencing a prior gunshot wound injury 

(AOR=11.4, 95% CI=2.7, 48.1) and being subject to community probation (AOR=13.2, 95% 

CI=5.7, 30.3) were associated with the highest risk of subsequent firearm violence perpetration, 

though multiple other sentinel events were informative. The mean number of sentinel events 

experienced by youth committing firearm violence was 13.0 versus 1.9 among controls 

(p<0.0001). Within the sample, 84.1% of youth experiencing a sentinel event in all five studied 

domains ultimately committed firearm violence.

Conclusions—Youth who commit firearm violence have preceding patterns of life events that 

markedly differ from youth not involved in firearm violence. This information is readily available 

from administrative data, demonstrating the potential of data sharing across city and state 

institutions to focus prevention strategies on those at greatest risk.

Introduction

In 2013, local and national media reported on a steady surge in firearm violence in 

Wilmington, Delaware.1–3 From 2011 to 2013, the number of victims injured in shootings in 

the city rose more than 60%, from 95 to 154 individuals.4 By the close of 2013, Wilmington 

had recorded its most violent year in memory from firearm violence. Although Wilmington 

is a small city of approximately 71,525 residents, when compared with all U.S. cities with 

more than 100,000 inhabitants, its homicide rate has been reported as high as fourth overall 

in recent years.1,5

Consequently, the Wilmington City Council passed a resolution requesting the Centers for 

Disease Control and Prevention (CDC) to assist in an investigation that would yield 

recommendations for preventive action.3 At the invitation of the Delaware Division of Public 

Health, officials from CDC traveled to Wilmington in June 2014 to investigate potential 

solutions.

Preventing lethal violence presents a challenging task. Although violence has long been 

investigated by researchers from diverse domains—including public health, medicine, 

criminology, sociology, and psychology, among others—there exist significant barriers that 

cities and states face in real-world implementation of violence prevention activities. First, 

violence prevention activities often are implemented as domain-specific approaches (i.e., 

police department, child welfare) and there is a greater need for collaborative, cross-sectoral 

strategies.6,7 Second, all cities may not be able to support new, expensive data collection 

efforts, such as occur in research studies, to investigate novel approaches or guide activities. 

And third, cities must often make critical decisions on how and where to focus limited 

resources on prevention activities. Because of these challenges, in part, there has been a 

growing interest across cities and states in utilizing readily available administrative data to 

better focus services.8

Municipal use of large volumes of administrative or incidental data to guide service 

provision is expanding, with early examples emerging in cities such as New York and 

Chicago in the areas of lead poisoning prevention, food safety, and unsafe housing 

identification, among others.9–11 Concurrent with this work, some attempts have been made 

to better use administrative data to improve violence prevention activities. For example, risk 
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stratification approaches based on administrative data have been researched in the areas of 

parolee recidivism, inmate misconduct, child abuse, school violence, and military suicide.
12–16 Such approaches have demonstrated considerable promise, yet have certain limitations. 

Often, these strategies are implemented within single departments and thus only have access 

to department-specific information, which can reduce performance of some risk 

stratification approaches and not permit service providers to have a full picture of all of an 

individual’s contributing risk factors.

Given broad support in Wilmington for firearm violence prevention, local partners in 

collaboration with CDC evaluated the feasibility of using administrative data across a wide 

range of state and city agencies and institutions to facilitate a better understanding of the risk 

of youth firearm violence perpetration, as well as promote a comprehensive, multipartner 

response. Administrative data were compiled on individuals’ life events from one of the 

most comprehensive arrays of data sources thus far used in violence prevention planning and 

explored for utility in gaining a more comprehensive insight into youth firearm violence 

perpetration.

Methods

Study Design and Setting

This study utilized a population-based, matched case-control sampling strategy to assemble 

a sample from which a wide variety of risk factors for firearm violence perpetration were 

assessed. This pilot investigation was carried out in Wilmington, Delaware, as part of a 

public health response performed by CDC in collaboration with local partners in June 2014.

Cases were selected from the Delaware Justice Information System (DELJIS), a statewide 

police database that maintains electronic records on all individuals arrested in Delaware. All 

Wilmington residents arrested for a violent firearm crime committed in the city of 

Wilmington between January 1, 2009 and May 21, 2014 were identified from DELJIS. A 

violent firearm crime was defined using criteria specified by Delaware law enforcement 

officials and included homicide, attempted homicide, aggravated assault, or robbery with a 

firearm. Cases were selected from DELJIS based on Delaware crime codes indicating the 

offense type. In addition to crime codes, arrest records also list state statute violations; all 

individuals charged with possession of a firearm during the commission of a felony were 

also included in the event that crime code information was non-specific.

Based on electronic data availability, the study focused on male cases and controls born in 

1980 or after (individuals aged ≤34 years at the time of perpetration). This population 

represents those at highest risk of perpetration and covers 74% of interpersonal firearm 

violence perpetrators in Wilmington over the study time period.

A list is also maintained by DELJIS of all individuals who have received official state 

identification, such as a driver’s license or other identification form. This provides the most 

comprehensive sampling frame of the base population available. From this list, an algorithm 

using random numbers was used to sample Wilmington residents matched on year of birth 

and sex in a 3:1 ratio to cases. Statistical power to detect differences generally decreases 
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exponentially beyond a 3:1 ratio and this number also represented the maximum number of 

study subjects feasible for manual review of emergency department charts.17

Data Sample

For case and control populations, investigators examined emergency department visit 

history, child welfare encounters, juvenile justice involvement, employment records, and 

school system events. The assessment focused on “sentinel events,” defined as incidents in 

an individual’s life that occur before the commission of a firearm crime that may be a signal 

or marker for increased perpetration risk.

For all cases, events that occurred before the date of the individual’s first recorded violent 

firearm offense in Wilmington were examined. For each control matched to a case, the 

case’s violence perpetration date was used as the same date of interest for which prior life 

events were examined. This allowed each matched case/control unit to have equal exposure 

time. Data were linked by participating agencies; available information from DELJIS for 

linking included name, date of birth, and Social Security number with simple deterministic 

matching pursued given the brief time frame for the field investigation. Linking to labor 

records was done by exact matching on Social Security number alone. Emergency 

department, juvenile justice, education, and child welfare databases were linked to using 

name and date of birth by exact matching; if a Social Security number was present, it was 

also used in the deterministic match. Unique identifiers were removed prior to analysis.

Emergency department visit details were extracted by study investigators from Christiana 

Care Health Care System’s electronic medical records. Emergency department electronic 

medical records, available since 2000, were abstracted for experiences of violence 

victimization and any encounter involving the police (injury due to legal intervention, 

brought in by police, or discharged to police).

Child welfare and juvenile delinquency encounters were obtained from the Delaware 

Department of Services for Children, Youth and their Families with computerized records 

available since 1992. From the Delaware Department of Labor, unemployment information 

was available by quarter for the preceding 5 years (calculated from wage data); data on 

applications filed for unemployment benefits and the status of those applications were 

available since 2006.

Lastly, from the Delaware Department of Education information on school events was 

obtained, including: unexcused absences (available since 2009), school dropout (since 

2002), receipt of social assistance such as food stamps and Medicaid (since 2009), and 

suspension/expulsion event data (from 2006). Finally, the Census tract of each individual’s 

residence was determined using the U.S. Census Bureau’s Geocoder. The variables that were 

selected for examination were those that were readily available, routinely collected, and had 

strong theoretic reasons for supporting a potential association with violence risk. All data 

were available during the entire study period, with the exception of unemployment (not 

available prior to July 2009).
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Statistical Analysis

The distribution of sentinel events among cases and controls was first explored by plotting a 

timeline of each individuals’ life over the study time period. Next, the prevalence of the 

various sentinel events among case and control populations was calculated, as well as the 

bivariate OR for each sentinel event. Variables were generally all coded as binary events, 

indicating either the presence or the absence of each sentinel event in an individual’s life 

according to administrative records. For the unemployment variable, missing data existed 

prior to July 2009, and were coded as a separate category so as not to exclude these 

individuals from regression modeling. Census tract of residence, which is included as a 

control variable in multivariable modeling, was coded as a multilevel categorical variable. 

Census tracts with a small number of subjects were merged with nearby Census tracts to 

improve model stability.

For the multivariable model for firearm violence perpetration, all terms were included with 

the exception of variables on applications for unemployment benefits, to reduce collinearity, 

and variables on substantiated child maltreatment and residential detention, as they were 

largely nested in higher order variables.18 ORs were calculated using conditional logistic 

regression with PROC LOGISTIC in SAS, version 9.3 to account for the matching in the 

study design.

To test differences in the mean number of sentinel events experienced by cases and controls, 

a permutation test was used. Lastly, the percentage of individuals within the sample who 

ultimately committed firearm violence and the number of major domains—health, 

economic, child welfare, juvenile services, and education—that they had a sentinel event in 

were calculated and plotted. Statistical analyses, conducted in 2015, were performed in SAS, 

version 9.3 and R, version 3.1.1.

Results

Four hundred twenty-one cases were identified and matched to 1,259 controls on year of 

birth and sex. Four individuals selected for the control population were cases. These four 

individuals were removed from the control list without replacement as their true 

classification was cases. Figure 1 displays a timeline of the life events among case and 

control populations prior to the violent firearm offense date for cases (or the matched date 

for controls). For nearly all sentinel events, cases were more likely to experience these life 

events than the control population.

Table 1 displays the prevalence of the various sentinel events among the case and control 

populations as well as the OR of the bivariable association between each sentinel event and 

firearm violence perpetration. Notably, 14.0% of cases experienced a gunshot wound prior to 

arrest for a violent firearm offense, compared with 0.8% of the control population. More 

than one third (34.7%) of cases had been investigated as a potential victim of maltreatment 

as a child, relative to 7.9% of controls. Cases had significant involvement in juvenile justice 

services as a youth: 63.0% had undergone community-level probation, contrasted with 7.4% 

of controls. Both unemployment (87.8%) and receipt of social assistance while in school 
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(84.5%) were present in the majority of cases with record availability, though 65.9% and 

33.1% of controls, respectively, had these characteristics as well.

Table 1 also shows the results of the multivariable logistic regression model. Having been 

involved in the community probation system was associated with a >13-fold increase in 

subsequent arrest for firearm violence (AOR=13.2, 95% CI=5.7, 30.3). Additionally, 

experiencing a prior gunshot wound injury was associated with a >11-fold increase in 

subsequent arrest for a violent firearm offense (AOR=11.4, 95% CI=2.7, 48.1). Beyond 

involvement in prior criminal activities and firearm violence victimization, other variables 

were significantly associated with firearm violence arrest, including unemployment 

(AOR=3.0, 95% CI=1.5, 6.2) and being the recipient of social assistance programs (a proxy 

for poverty) while in school (AOR=2.1, 95% CI=1.0, 4.3). Multiple other studied variables

—including stabbings, blunt weapon injuries, out-of-home placements for child welfare, and 

school dropout—demonstrated associations at the p≤0.10 level, also suggesting a potential 

utility for risk stratification.

Figure 2 displays the distribution of the total number of sentinel events experienced by cases 

and controls for sentinel events in which repeated events can be ascertained (only three 

variables—unemployed in preceding quarter, recipient of assistance programs ever, and ten 

or more unexcused absences in preceding school year are only available as single-instance 

variables and are thereby excluded from this plot as they do not have the structure to assess 

for repeat occurrences). The mean number of sentinel events experienced by youth arrested 

for firearm violence was 13.0 versus 1.9 among controls (p<0.0001). The median number of 

events between these two groups was 10 and 0, respectively.

Figure 3 explores the number of major domains of life that each individual experienced a 

sentinel event in (health, economic, child welfare, juvenile services, and educational). In the 

sample, 310 individuals experienced a sentinel event in no domain, 644 experienced an event 

in one domain, 302 in two domains, 211 in three domains, 150 in four domains, and 63 in all 

five domains. There is suggestion of a dose–response relationship in Figure 3 as, for 

example, only 7.6% of individuals who experienced a sentinel event in one domain were 

ultimately arrested for firearm violence compared with 84.1% of youth experiencing a 

sentinel event in all five domains.

Discussion

Youth arrested for firearm violence have markedly different life events than individuals not 

involved in firearm violence. Using data from a wide variety of domains provided unique 

insights into the patterns of sentinel events that could help identify youth at the highest risk 

of firearm violence in Wilmington. This information helps demonstrate the potential of 

linking and sharing data across city and state agencies to improve public health and social 

service assistance programs.

This investigation’s assessment of administrative data confirms some important findings 

from recent influential studies, while contributing additional unique insights. For example, 

strong associations between violence victimization, youth delinquency, and subsequent 
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crime perpetration have been reported in prior investigations.19,20 However, this study 

provides assessments of multiple narrow categories of events (i.e., stabbings, blunt weapon 

injuries), as well as a wide array of factors that span an individual’s entire life course from 

youth to early adulthood (i.e., child welfare placements, school-related items, and 

employment history). Additionally, because this investigation is able to look across the entire 

life history, it can assess the total burden of sentinel events and explore how impacts in 

multiple domains of life affect perpetration risk.

Nonetheless, the most important contribution of this study is not in assessing a diverse array 

of risk factors for youth firearm violence perpetration, but rather, in demonstrating the 

feasibility and potential of linking a diverse array of administrative data to inform real-world 

programmatic planning. Use of administrative data avoids the cost of survey-based data 

collection. Furthermore, all administrative data represent objective endpoints, thereby 

avoiding potential differential recall and disclosure biases associated with surveys. Data 

linking in the investigation was performed over an approximate 3-week period by Delaware 

agencies, suggesting a feasible time commitment for other locales considering such work. 

Lastly, use of administrative data facilitates automated risk assessment approaches, which 

are becoming increasingly explored for their ability to help guide limited prevention 

resources.16,21,22 Statistical and computation developments have produced a range of 

powerful modern techniques, ranging from random forests to support vector machines, for 

example.23

Limitations

Some limitations of the current investigation should be mentioned. First, although all 

variables were created from administrative data, the study team manually abstracted 

emergency department records so as to explore additional contextual insight. Nonetheless, 

alterative options for automated use of hospital data exist—such as trauma registries or 

billing/diagnosis codes. Second, this investigation represents a pilot study based on a sample 

of the general population. As with all such studies, precise estimates could be affected to 

some degree by the sampling strategy—only those individuals present in administrative 

databases could be sampled as cases and controls and thus there may exist a certain degree 

of unmeasurable bias because of this limitation. Also, it is likely that these administrative 

data sources contained some degree of missing information. Missing data would be present 

if a professional at any of the respective agencies failed to record the presence of a sentinel 

event for that youth or if systematic or technical errors in agency data collection failed to 

capture information about young people it worked with. Unfortunately, it is impossible to 

quantify the degree of missing data, as a non-event and a missing data point appear in the 

data the same way. However, it is unlikely that missing information would have differed 

markedly between cases and controls. If such a differential bias did exist, theoretically, 

firearm violence perpetrators might have had more administrative encounters for sentinel 

events and thus more opportunity for missing data on these events; this would bias the 

study’s estimates toward the null. Third, this pilot study used arrest as a proxy for 

perpetration; these items are not always equivalent and should be examined in future 

research. Furthermore, some important variables were not examined in this study, such as 

neighborhood-level characteristics, and should be examined in future studies. Lastly, in the 
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study’s approach, ascertaining information on an individual required matching across 

administrative databases. Simple deterministic matching was favored in this study, given the 

urgent nature of the epidemiologic response and the generally high positive predictive value 

of such matching; however, administrative data may contain erroneous fields that could 

prevent successful linkage from occurring and the development, testing, and validation of 

probabilistic or more-complex iterative deterministic linkage plans should be part of future 

work.24

Conclusions

Although researchers have identified important risk factors for violence perpetration, cities 

and states tasked with implementing real-world violence prevention initiatives often face 

challenges in delivery of preventive services. Many locales are limited in their ability to 

assess the full spectrum of risk factors individuals may face and to work across agencies to 

address violence. This investigation demonstrates the feasibility and potential of using 

linked data to more comprehensively understand youth violence perpetration risk and could 

be ultimately used to better focus a package of evidence-based services to the most 

vulnerable youth in society.25–32 Such an approach creates potential benefit for all involved

—using linked administrative data could help cities improve the cost effectiveness of service 

delivery, help youth at high risk for violence receive needed services, and foster safer 

communities for all citizens as the burden of death and injury from violence is reduced.
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Figure 1. 
Timeline of sentinel events preceding firearm violence perpetration for case and control 

populations, Wilmington, Delaware.

Note: Unemployment in quarter preceding firearm violence, receipt of social assistance, and 

unexcused school absences not plotted as these events are not associated with specific dates. 

For each case, the black dot represents the actual date of firearm violence perpetration. For 

the three controls that are matched to each case, the case’s perpetration date is used as the 

date of interest to examine preceding events among controls. This permits each case-control 

pair to have equal exposure time.
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Figure 2. 
Total number of sentinel events experienced by each individual and subsequent firearm 

violence perpetration status.

Note: Figure displays the distribution of the total number of sentinel events experienced by 

cases and controls. The upper boundary of each box, the line in the middle of each box, and 

the lower boundary of each box represents the 75th, 50th, and 25th percentile, respectively. 

Exact values are reported in the Results section. The whiskers extend from each box to the 

highest and lowest values that are within 1.5 times the interquartile range. The dots show 

each individual in the dataset and their corresponding number of sentinel events. Three 

sentinel event types (unemployed in preceding quarter, recipient of assistance programs ever, 

and ≥10 unexcused absences in preceding school year) are only available as single-instance 

variables and thereby are excluded from this plot as they do not have the structure to assess 

for repeat occurrences.
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Figure 3. 
Number of major categories of sentinel events experienced and subsequent firearm violence 

perpetration within study sample.

Note: The five potential categories of sentinel events that can be experienced are those 

shown in Table 1—emergency department visits, economic events, child welfare encounters, 

juvenile services, and educational events.
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